Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1141538, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923125

RESUMO

There is a renewed interest in sustainable agriculture wherein novel plant growth-promoting rhizobacteria (PGPR) are being explored for developing efficient biostimulants. The key requirement of a microbe to qualify as a good candidate for developing a biostimulant is its intrinsic plant growth-promoting (PGP) characteristics. Though numerous studies have been conducted to assess the beneficial effects of PGPRs on plant growth under normal and stressed conditions but not much information is available on the characterization of intrinsic traits of PGPR under stress. Here, we focused on understanding how temperature stress impacts the functionality of key stress tolerant and PGP genes of Bacillus sp. IHBT-705 isolated from the rhizosphere of saffron (Crocus sativus). To undertake the study, Bacillus sp. IHBT-705 was grown under varied temperature regimes, their PGP traits were assessed from very low to very high-temperature range and the expression trend of targeted stress tolerant and PGP genes were analyzed. The results illustrated that Bacillus sp. IHBT-705 is a stress-tolerant PGPR as it survived and multiplied in temperatures ranging from 4°C-50°C, tolerated a wide pH range (5-11), withstood high salinity (8%) and osmolarity (10% PEG). The PGP traits varied under different temperature regimes indicating that temperature influences the functionality of PGP genes. This was further ascertained through whole genome sequencing followed by gene expression analyses wherein certain genes like cspB, cspD, hslO, grpE, rimM, trpA, trpC, trpE, fhuC, fhuD, acrB5 were found to be temperature sensitive while, cold tolerant (nhaX and cspC), heat tolerant (htpX) phosphate solubilization (pstB1), siderophore production (fhuB and fhuG), and root colonization (xerC1 and xerC2) were found to be highly versatile as they could express well both under low and high temperatures. Further, the biostimulant potential was checked through a pot study on rice (Oryza sativa), wherein the application of Bacillus sp. IHBT-705 improved the length of shoots, roots, and number of roots over control. Based on the genetic makeup, stress tolerance potential, retention of PGP traits under stress, and growth-promoting potential, Bacillus sp. IHBT-705 could be considered a good candidate for developing biostimulants.

2.
Front Plant Sci ; 14: 1041413, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36794211

RESUMO

Increased food production to cater the need of growing population is one of the major global challenges. Currently, agro-productivity is under threat due to shrinking arable land, increased anthropogenic activities and changes in the climate leading to frequent flash floods, prolonged droughts and sudden fluctuation of temperature. Further, warm climatic conditions increase disease and pest incidences, ultimately reducing crop yield. Hence, collaborated global efforts are required to adopt environmentally safe and sustainable agro practices to boost crop growth and productivity. Biostimulants appear as a promising means to improve growth of plants even under stressful conditions. Among various categories of biostimulants, microbial biostimulants are composed of microorganisms such as plant growth-promoting rhizobacteria (PGPR) and/or microbes which stimulate nutrient uptake, produce secondary metabolites, siderophores, hormones and organic acids, participate in nitrogen fixation, imparts stress tolerance, enhance crop quality and yield when applied to the plants. Though numerous studies convincingly elucidate the positive effects of PGPR-based biostimulants on plants, yet information is meagre regarding the mechanism of action and the key signaling pathways (plant hormone modulations, expression of pathogenesis-related proteins, antioxidants, osmolytes etc.) triggered by these biostimulants in plants. Hence, the present review focuses on the molecular pathways activated by PGPR based biostimulants in plants facing abiotic and biotic challenges. The review also analyses the common mechanisms modulated by these biostimulants in plants to combat abiotic and biotic stresses. Further, the review highlights the traits that have been modified through transgenic approach leading to physiological responses akin to the application of PGPR in the target plants.

3.
Front Plant Sci ; 13: 976295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438106

RESUMO

Ocimum basilicum L. and its derived products are primarily consumed by humans; hence, agrochemical use seems inappropriate for its cultivation. However, farmers are accustomed to using rampant inorganic fertilizers to augment crop productivity, which has unintendedly engendered severe environmental perturbations. Concomitantly, farmers will soon have to confront the challenges of growing crops under suboptimal conditions driven by global climate change. Consequently, to develop a clean, sustainable, and resilient production technology, field experiments spanning over two years (2020 and 2021) were conducted, comprising three biostimulants, viz., vermicompost (0, 4, and 8 Mg ha-1), biofertilizer (uninoculated and inoculated), and liquid seaweed extract (without and at 7 ml L-1) in the Indian western Himalaya for the first time. Soil health indicators, leaf photosynthetic pigments, gaseous exchange, mineral contents, essential oil (EO) quantity, and composition were evaluated. Soil microbial respiration (SMR), microbial biomass carbon (MBC), organic carbon (OC), dehydrogenase (DHA), alkaline phosphatase (ALP), and ß-glucosidase activities were increased by 36.23, 83.98, 30.61, 42.69, 34.00, and 40.57%, respectively, when compared with the initial soil status. The net photosynthetic rate (Pn) was significantly increased with the highest (8 Mg ha-1) and moderate (4 Mg ha-1) vermicompost dosages by 13.96% and 4.56%, respectively, as compared with the unfertilized control (0 Mg ha-1). Likewise, the biofertilizer and seaweed extract also enhanced Pn by 15.09% and 10.09%, respectively. The crop's key EO constituents, viz., methyl chavicol and linalool, were significantly improved with the highest and moderate vermicompost rates of 2.71, 9.85%, and 1.18, 5.03%, respectively. Similarly, biofertilization and seaweed application also boosted methyl chavicol and linalool by 3.29, 8.67%, and 1.93, 3.66%, respectively. In both years, significantly higher herbage (8.86 and 11.25 Mg ha-1) and EO yield (113.78 and 154.87 kg ha-1) were recorded with a congregate treatment of the highest vermicompost dose, biofertilizer, and liquid seaweed extract. In conclusion, the integrated use of biostimulants having complementary properties can sustainably maximize the quantity and quality of O. basilicum and concomitantly ameliorate soil health. This study can inspire scientific communities and industries to develop second-generation biostimulant products, delivering better sustainability and resilience for a renaissance in agriculture.

4.
Plant Physiol Biochem ; 154: 171-183, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32563041

RESUMO

Nitrogen (N) is an important nutrient for plant growth. However, its excess application leads to environmental damage. Hence, improving nitrogen use efficiency (NUE) of plant is one of the plausible options to solve the problems. Aim of this study was to identify candidate genes involved in enhancing NUE in potato cv. Kufri Gaurav (N efficient). Plants were grown in aeroponic with two contrasting N regimes (low N: 0.75 mM, and high N: 7.5 mM). Higher NUE in Kufri Gaurav was observed in low N based on the parameters like NUE, NUpE (N uptake efficiency), NUtE (N utilization efficiency) and AgNUE (agronomic NUE). Further, global gene expression profiles in root, leaf and stolon tissues were analyzed by RNA-sequencing using Ion Proton™ System. Quality data (≥Q20) of 2.04-2.73 Gb per sample were mapped with the potato genome. Statistically significant (P ≤ 0.05) differentially expressed genes (DEGs) were identified such as 176 (up-regulated) and 30 (down-regulated) in leaves, 39 (up-regulated) and 105 (down-regulated) in roots, and 81 (up-regulated) and 694 (down-regulated) in stolons. The gene ontology (GO) terms like metabolic process, cellular process and catalytic activity were predominant. Our RT-qPCR analysis confirmed the gene expression profiles of RNA-seq. Overall, we identified candidate genes associated with improving NUE such as superoxide dismutase, GDSL esterase lipase, probable phosphatase 2C, high affinity nitrate transporters, sugar transporter, proline rich proteins, transcription factors (VQ motif, SPX domain, bHLH) etc. Our findings suggest that these candidate genes probably play crucial roles in enhancing NUE in potato.


Assuntos
Genoma de Planta , Nitrogênio/metabolismo , Solanum tuberosum , RNA de Plantas , Análise de Sequência de RNA , Solanum tuberosum/genética , Transcriptoma
5.
3 Biotech ; 9(7): 262, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31192087

RESUMO

Allelic variation in wild potato (Solanum) species was analysed using 14 simple sequence repeat (SSR) markers. SSR allelic profiles showed high polymorphism and distinctness among the wild species. A total of 109 alleles of 14 polymorphic SSR markers were scored in 82 accessions belonging to 22 wild potato species. Allele size ranged from a minimum of 104 bp (STI0030) to a maximum of 304 bp (STM5114). Number of SSR alleles per marker ranged from 4 (STM5127/STM1053) to 13 (STM0019), whereas PIC value varied between 0.66 (STM1053) and 0.91 (STM0019). Cluster analysis using SSR allelic profiles of 82 accessions grouped showed 5 major clusters (I-V) based on the Dice similarity coefficient using neighbour-joining clustering method. Distinct allelic variations were observed among the accessions irrespective of the origin country, series and species. Our study suggests that SSR-based molecular characterization of wild potato species is accession specific and development of an allelic dataset for all the accessions would strengthen their utilization in potato research in future.

6.
Genome ; 58(6): 305-13, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26284309

RESUMO

Genes involved in photoassimilate partitioning and changes in hormonal balance are important for potato tuberization. In the present study, we investigated gene expression patterns in the tuber-bearing potato somatic hybrid (E1-3) and control non-tuberous wild species Solanum etuberosum (Etb) by microarray. Plants were grown under controlled conditions and leaves were collected at eight tuber developmental stages for microarray analysis. A t-test analysis identified a total of 468 genes (94 up-regulated and 374 down-regulated) that were statistically significant (p ≤ 0.05) and differentially expressed in E1-3 and Etb. Gene Ontology (GO) characterization of the 468 genes revealed that 145 were annotated and 323 were of unknown function. Further, these 145 genes were grouped based on GO biological processes followed by molecular function and (or) PGSC description into 15 gene sets, namely (1) transport, (2) metabolic process, (3) biological process, (4) photosynthesis, (5) oxidation-reduction, (6) transcription, (7) translation, (8) binding, (9) protein phosphorylation, (10) protein folding, (11) ubiquitin-dependent protein catabolic process, (12) RNA processing, (13) negative regulation of protein, (14) methylation, and (15) mitosis. RT-PCR analysis of 10 selected highly significant genes (p ≤ 0.01) confirmed the microarray results. Overall, we show that candidate genes induced in leaves of E1-3 were implicated in tuberization processes such as transport, carbohydrate metabolism, phytohormones, and transcription/translation/binding functions. Hence, our results provide an insight into the candidate genes induced in leaf tissues during tuberization in E1-3.


Assuntos
Regulação da Expressão Gênica de Plantas , Análise em Microsséries/métodos , Folhas de Planta/química , Tubérculos/química , RNA de Plantas/isolamento & purificação , Solanum tuberosum/genética , Metabolismo dos Carboidratos/genética , Fotossíntese/genética , RNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...